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ABSTRACT 

This research introduces a novel, data-driven method to optimize dry grinding classification 

circuits in mineral processing, leveraging advanced machine-learning techniques, specifically 

reinforcement learning. It pioneers the integration of digital twins, creating dynamic simulations 

that enhance operational efficiency, reduce energy consumption, and therefore promote 

sustainability. By implementing digital twins paired with reinforcement learning, the research 

establishes a system capable of real-time adaptation, significantly improving product quality 

and production rates. While this study focuses on cement clinker grinding, the developed 

approach demonstrates potential for adaptation and scaling across various mineral processing 

operations, setting a precedent for advanced control systems in the industry. 
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INTRODUCTION 

In the evolving landscape of the industrial sector, particularly in mineral processing, the quest 

for enhanced operational efficiency and technological advancement is ever-present. Key 

among these processes is the optimization of grinding circuit operations, critical for both 

production efficiency and product quality. Yet, achieving optimal performance in these circuits 

is a challenging endeavor due to their complexity and the dynamic interplay of variables 

involved. 

This research explores the development of innovative methodologies and technological 

solutions, with a particular focus on the application of machine learning to improve dry grinding 

classification circuit operations across the mineral processing industry. Given the extensive 

application of these processes in cement production, it serves as a critical example. Cement 

grinding is notably energy-intensive, with electrical energy accounting for about 10% of the 

total energy consumption in cement production. Specifically, the electrical energy used in the 

cement-making process is approximately 95 to 110 kWh per ton of cement, with the clinker 

grinding stage alone consuming about 40% of this amount (Hosten & Fidan, 2012). Optimizing 

energy efficiency in such processes is not just a technical challenge but a critical environmental 

imperative due to the considerable energy demands and environmental implications 

associated with grinding processes. 

Furthermore, the mineral processing industry faces challenges including the intricate nature of 

ore bodies, rapid shifts in market demands, and an emerging scarcity of skilled labor. These 

challenges often lead to reliance on increased operational safety margins, which can result in 

fluctuations in product quality and suboptimal plant performance. The reliance on human 



Page 2 

oversight in complex and variable processes like grinding circuits introduces potential errors 

and inefficiencies. 

Against this backdrop, our research explores the transformative potential of data science and 

machine learning in mineral processing. The integration of digital twin technology and 

reinforcement learning in grinding circuits represents a significant technological leap. Digital 

twins allow for real-time monitoring and control, providing a platform for operational 

experimentation and optimization. When combined with reinforcement learning algorithms, 

these systems offer a dynamic, adaptive approach to process control, surpassing traditional 

methods. 

The aim of this study is to create an autonomous control system for dry grinding circuits through 

a data-driven, machine learning approach. The research encompasses the identification of key 

variables, the construction of a digital twin for the grinding circuit, the design of a reinforcement-

learning model, and discusses some initial thoughts about the development of an edge-

computing layout for industrial implementation. In doing so, this research addresses the 

pressing need for energy efficiency, operational safety, and sustainability in the mineral 

processing industry. 

By bridging the gap between theoretical research and practical application, this study not only 

contributes to the field of intelligent process control but also provides actionable solutions to 

enhance the efficiency and sustainability of mineral processing operations, leading the industry 

towards a more sustainable and more efficient future. 

 

LITERATURE REVIEW 

Introduction: The Necessity of Grinding Circuit Optimization 

This research presents an in-depth exploration of dry grinding circuits in mineral processing, 

with a particular focus on a configuration that is frequently encountered in cement production. 

As demonstrated in Figure 1, the study concentrates on a specific setup: a two-compartment 

ball mill paired with a dynamic separator. This choice is based on the widespread use of this 

configuration in the industry and its significant potential for operational optimization. 
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1) Fresh feed bunker 

2) Ball mill 

3) a: dynamic separator; b: mill dedusting filter & fan 

4) product filter 

5) CEOPS particle size distribution measurement  

Figure 1: Schematic representation of a typical dry grinding circuit as considered in this 

research, emphasizing the specific configuration of a two-compartment ball mill paired 

with a dynamic separator. 

The methodologies developed in this research, while tailored to this specific layout, are 

designed to be modular and adaptable. They could be extended to various circuit layouts in 

mineral processing, underlining the versatility of the proposed approach. This adaptability 

makes the research valuable not just for the specific grinding circuit under study but also for 

broader applications in mineral processing. 

The study intentionally omits the analysis of pre-grinding equipment such as roller presses, 

which are commonly integrated into modern grinding circuits. Roller presses induce micro-

fractures in the material, thereby reducing the energy required for grinding and enhancing 

overall energy efficiency. However, incorporating a roller press would require specific 

evaluations tailored to individual plants, a complexity beyond the scope of this study. This 

aspect of comminution technology, and its implications for energy efficiency in grinding circuits, 

is extensively discussed in the work of (Forssberg & Yanmin, 2003). Additionally, this research 

does not delve into other physical optimization methods like optimizing the liners or grinding 

media distribution, which can also significantly improve grinding efficiency. Instead, the focus 

is on optimizing operational parameters within the preexisting setup. 
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Evolution of Control Strategies in Grinding Circuits 

The realm of control systems in grinding circuits has witnessed a significant evolution, marked 

by the transition from manual adjustments to more complex automated systems. This shift is 

reflective of the ongoing efforts to address the challenges posed by the intricate nature of 

grinding operations. 

Proportional-Integral-Derivative (PID) Controllers 

Historically, the workhorse of control systems in these circuits has been the Proportional-

Integral-Derivative (PID) controllers. These systems have been extensively utilized due to their 

simplicity and ease of implementation. Studies by (Edwards, Vien, & Perry, 2002; Wei & Craig, 

2009a) underline the widespread adoption of PID controllers in the industry. However, the 

inherent limitations of PID controllers, particularly their inability to adapt to the dynamic and 

complex nature of grinding processes, have been a point of concern. 

Alternative Control Methodologies 

In addition to PID controllers, there are alternative control methodologies that can be paired 

with them to enhance their capability, each with its unique strengths and challenges. The 

literature highlights several of these strategies: 

 Step Controllers: Designed to maintain system variables within a specified range, 

making discrete adjustments in response to deviations from a set threshold. Their 

application is advantageous in systems not designed for continuous updates to the 

control value. 

 Fuzzy Logic Controllers: These controllers use "If-Then" rules to manage 

uncertainties and approximate reasoning, suitable for complex systems where 

variables do not conform to strict binaries (Radha Krishna & Biswal, 2016; Zadeh, 

1973). 

 Model Predictive Control (MPC): MPC represents a significant advancement, utilizing 

dynamic models to predict and optimize future system behaviors (Qin & Badgwell, 

2003; Rawlings & Mayne, 2009). Despite its capabilities, the computational intensity of 

MPC and the need for continuous model updates present practical challenges. 

A comparative analysis of conventional control methods (such as PID, step and fuzzy-logic 

controllers) and advanced methods (like Model Predictive Control (MPC)) reveals the 

limitations of traditional approaches in adapting to the dynamic nature of grinding processes. 

The literature suggests that while conventional controllers are simple and widely used, they 

fall short in managing complex systems (Costea, et al., 2014; Pomerleau, Hodouin, Desbiens, 

& Gagnon, 2000). Advanced methods like MPC have historically faced challenges in 

computational intensity and model upkeep (Qin & Badgwell, 2003; Rawlings & Mayne, 2009), 

but recent advancements in computational hardware and machine learning technologies have 

begun to overcome these hurdles. 

The increasing power of modern processors and the advent of state-of-the-art machine 

learning techniques have greatly reduced concerns around computational demands, making 

real-time analysis and model adjustment feasible even in complex industrial environments. 

Furthermore, machine learning's inherent adaptability offers a promising solution to the issue 

of model degradation, facilitating systems that can evolve and self-correct over time. 

It is with these considerations that we recognize the value of MPC as a robust control strategy 

in our field, and simultaneously suggest that the integration of recent technological 

advancements can further enhance its effectiveness and reliability. 
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Shift Toward Sophisticated Strategies 

Recent literature indicates a notable shift towards more sophisticated control strategies. This 

transition is driven by the need to address the complexity and variability inherent in grinding 

processes. The emergence of digitalization and data-driven technologies has paved the way 

for the integration of advanced machine learning algorithms and real-time analytics into these 

systems, heralding a new era of efficiency and adaptability in grinding circuit control (Ivezić & 

Petrović, 2003). 

Digitalization and Automation: The Rise of Digital Twins 

The concept of the digital twin originated from a NASA technology report in 2010 (Shafto, et 

al., 2010), defining it as an integrated multiphysics, multiscale simulation of a system that 

reflects its real-life counterpart. These sophisticated simulations facilitate predictive modeling 

and enable comprehensive testing of control strategies. Studies by (Cronrath, Aderiani, & 

Lennartson, 2019) and (García & Fernández, 2015) underscore the vital role of digital twins in 

revolutionizing behavioral control methodologies, particularly when paired with reinforcement 

learning. This approach has significant implications for the development of industrial 

controllers. 

Digital twins act as a critical bridge between physical operations and digital analysis. They offer 

a unique advantage in understanding and managing the complex techno-socio-economic 

systems inherent in mineral processing. By providing a real-time, dynamic representation of 

physical systems, digital twins allow for enhanced decision-making and strategic planning in 

process control. 

Machine Learning and Advanced Data Analysis 

Machine learning, particularly neural networks, has emerged as a powerful tool for handling 

complex patterns in everyday situations (Rosenblatt, 1958; Taye, 2023). The literature reviews 

the application of various machine learning techniques in operations optimization, with a focus 

on LSTM (Long Short-Term Memory) networks and linear regression models for their ability to 

predict and analyze data (Hochreiter & Schmidhuber, 1997; Leonel, 2018). These methods 

have shown significant potential in enhancing control strategies by enabling predictive 

modeling and real-time analysis of processes. 

Reinforcement Learning: A Paradigm Shift in Control Strategies 

The application of reinforcement learning in grinding circuits represents a paradigm shift in 

control strategies. This machine learning technique, where an algorithm learns optimal 

decision-making through interactions with its environment, has been identified as a promising 

approach for dynamic and complex systems like grinding circuits (Sutton & Barto, 2018; Silver, 

et al., 2017; Conradie & Aldrich, 2001). The literature underscores its potential for autonomous 

control and continuous optimization of operational parameters. 

Gaps and Future Directions in Grinding Circuit Control 

In our investigation of this topic, we identified several gaps in current research, particularly in 

the practical application of advanced machine learning models for optimizing dry grinding 

circuits. Key challenges include the need for extensive data and computational resources, 

along with the integration of sophisticated models such as neural networks and reinforcement 

learning into real-world operations. Our review and analysis set a strong foundation for 

addressing these gaps, focusing on the development of scalable, efficient, and practical 

machine learning models for enhancing grinding circuit optimization. 
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METHODOLOGY FOR OPTIMIZING DRY GRINDING CLASSIFICATION CIRCUITS USING DATA-

DRIVEN APPROACHES 

Introduction to Methodology 

The emergence of data-driven methodologies marks a new era in mineral processing, 

particularly in optimizing industrial processes. This project adopts a comprehensive approach, 

leveraging advanced data collection, machine learning, and reinforcement learning 

techniques, aimed at enhancing the operational efficiency and sustainability of grinding 

operations. This approach is in line with the study's focus on a specific dry grinding circuit 

configuration illustrated in the introduction (Figure 1). 

Data Collection and Preliminary Analysis 

The schematic below details the preliminary considerations and preparatory steps taken to 

ensure a thorough and effective data analysis, crucial for optimizing the grinding circuit 

operations. 

 

Development of Data Collection Infrastructure 

Edge Device Selection 

An industrial-grade OnLogic Helix 511 fanless edge-PC, equipped with an Intel Core i5 

processor and 32 GB of RAM, was integrated into the plant’s control system. This edge 

Initial Process Analysis

A meticulous analysis was conducted to assess data quality and
frequency, establishing a robust understanding of the existing
grinding circuit. This critical examination laid the groundwork for
future data-driven optimization strategies.

Data Types and Acquisition

Identification of key data types—measurement values, operational
setpoints, and design characteristics—was crucial. This phase also
covered pilot testing at Cemtec’s small-scale facility to test initial
models and explore data interdependencies, setting the stage for
subsequent scale-up to industrial settings.

Scaling from Pilot Plant to Industrial Scale

The project initiated with pilot testing at Cemtec's facility, equipped
with a grinding setup (1.2 x 3.2 meters, 35 kW drive, 1.0 tph
throughput). This stage focused on developing and refining initial
models, assessing data interdependencies under controlled
conditions. Following pilot success, the study expanded to three
industrial-scale plants in the cement and minerals sector to test
model scalability and robustness. This expansion aims to validate
models across diverse operational environments, ensuring
adaptability and effectiveness.

Addressing Data Gaps

Recognizing infrequent analysis of particle size in industrial setups,
the decision was made to implement the CEOPS (Cemtec Online
Particle Measurement System). This allowed for real-time
measurements and significantly enhanced dynamic process
modeling capabilities.
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computing device, running Ubuntu Desktop 22.04 LTS and utilizing the OPC-UA 

communication protocol, served as a central repository for all operational data, crucial for the 

modeling process. It was selected for its capability to support advanced machine learning 

operations and potential future control algorithm deployment, ensuring seamless and secure 

data handling. 

Data Integrity and Frequency 

Data collection integrity and frequency were optimized by setting a one-minute sampling 

interval. This interval was chosen to balance the need for timely data against potential noise 

and fluctuations in measurements, with data being averaged over this period to mitigate short-

term variability. This setup ensures the data reflects the dynamic nature of the grinding process 

accurately and reliably, supporting robust modeling and analysis. 

Data Preparation and Feature Engineering 

To ensure the effectiveness of the machine learning models, the data preparation and feature 

engineering phases were meticulously structured. These phases included: 

 Data Merging and Normalization: Conducted a comprehensive merging and 

normalization process to align measurement values and operational setpoints from 

various sources, standardizing data formats and scales for analytical coherence. 

 Feature Selection and Cleaning: Identified and selected key features impacting the 

grinding process, rigorously cleaning the dataset to remove inconsistencies and 

applying action smoothing techniques for real-time operational stability. 

 Feature Engineering: Employed advanced techniques to transform raw data into 

formats optimized for machine learning, enhancing predictive power and capturing the 

complex dynamics of the grinding circuit. 

Model Development and Validation 

Model Segmentation 

The analysis of the grinding circuit highlighted the feasibility of independently modeling the 

separator, given its non-limiting design and size. This insight led to a two-segment modeling 

strategy: 

 Dynamic Separator Model: Utilizes LSTM networks combined with CNN layers to 

predict the particle size distribution (specifically the 80% passing size) based on 

operational parameters. This model effectively captures both time-series dependencies 

and spatial data, ensuring accurate predictions of the separator’s performance. 

 Ball Mill Model: This linear regression model predicts the reject mass flow rate, taking 

into account the time-dependent dynamics of the process. Key to this model is the 

inclusion of a time lag component that represents the delay between changes in 

operational setpoints (like feed rate and mill power) and their effects on output. This 

component is calibrated using the average material retention time in the mill, allowing 

the model to account for the gradual impacts of operational adjustments on the product 

size distribution. 

This strategic segmentation enhances the specificity and efficacy of the analysis, ensuring a 

comprehensive understanding of each component’s impact within the circuit. 

Validation and Testing 

The data-based digital twin models were rigorously evaluated using historical data, previously 

unseen during the training phase. For this purpose, the collected data was split into two sets: 

80% for training and 20% for testing. This split allowed for a comprehensive assessment of the 

models' performance, ensuring they were tested against data reflecting various operational 
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scenarios. This validation process was critical to ascertain the accuracy and reliability of the 

models in simulating real-world scenarios and to refine them for enhanced predictive 

capabilities. 

Reinforcement Learning for Optimization 

The development of a reinforcement learning environment is a critical step in training a 

reinforcement learning agent within a safe and controlled simulation. This environment defines 

the actions and observations within the grinding process, as well as a reward system to guide 

the agent towards process optimization. It also includes constraints to inform the agent of the 

limits of its actions, such as the maximum reject mass flow rate that can be conveyed within 

the circuit. A key aspect of this environment is the integration of a databased digital twin, 

modeled to replicate the grinding circuit's dynamics. This integration not only allows the 

reinforcement learning algorithm to interact, learn, and adapt based on simulated feedback but 

also ensures that the training is grounded in a realistic representation of the industrial process. 

The digital twin serves as a dynamic and high-fidelity model, providing the reinforcement 

learning agent with a rich, simulated context in which to develop its decision-making 

capabilities. 

Simulation Environment Development 

The reinforcement learning environment was created using Farama’s Gymnasium library 

(Towers, et al., 2023), replicating the dynamics of the grinding circuit. This simulated 

environment is essential for training the reinforcement learning agent before deploying it in 

real-world systems. 

Definition of Action and Observation Spaces 

Both action and observation spaces in our approach are continuous, defining the range of 

possible interactions and feedback within the process. 

 Action Space: Includes setpoints such as fresh material feed rate, mill dedusting fan 

speed, and separator fan and cage speeds. 

 Observation Space: Encompasses feedback values from the process, including 

measured and target product size, mill power, feed material mixture, and reject material 

flow rate. 

Reward Function Design 

The reward function in reinforcement learning is fundamental for guiding the agent’s decisions. 

For controlling a dry grinding circuit, we devised a reward function segmented into three 

objectives, each targeting a specific operational goal: 

 Regulation of Target Product Size: The primary goal is to maintain particle size as 

close as possible to a predefined target value. A hysteresis value (typically 1 µm) 

creates a tolerance range around the target. The reward is calculated as 1,000 times 

the inverse of the absolute difference between observed and target product size, 

penalizing deviations outside the hysteresis range. 

 Maximizing Throughput: The second goal is to maximize throughput while 

maintaining quality at the targeted level. The reward increases linearly with every 

added ton of throughput, penalizing any amount exceeding the maximum feed rate. 

 Reject Amount Constraint: The third objective limits the maximum level of the reject 

amount, penalizing excesses to maintain material capacity within specific plant areas, 

like the dynamic separator or bucket elevator. 

The cumulative reward combines these components, aligning them with the specific 

requirements of the grinding circuit. This alignment drives the reinforcement learning algorithm 
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towards solutions that are efficient and compliant with operational constraints, mirroring the 

intended control strategies for the system. 

Training and Evaluating Reinforcement Learning Algorithms 

In this study, we utilized the open-source reinforcement learning library Stable-Baselines 3 

(Raffin, et al., 2021). This library simplifies the implementation and testing of various 

reinforcement learning setups, providing a robust platform for our experiments. 

Algorithm Selection and Parameterization 

A critical step was the selection of reinforcement learning algorithms suitable for grinding circuit 

control. We evaluated both on-policy algorithms like Proximal Policy Optimization (PPO) and 

Actor-Critic (A2C), and off-policy algorithms including Soft Actor-Critic (SAC), Twin Delayed 

DDPG (TD3), and Deep Deterministic Policy Gradient (DDPG). This diverse range enabled a 

comprehensive comparison to determine the most effective algorithms for navigating the 

continuous action space and addressing the complexities of the circuit. 

Reinforcement Learning Training Process 

Algorithms underwent training within a digital twin environment, facing various simulated 

scenarios to refine strategies and optimize operational setpoints. The iterative learning process 

was guided by a reward function designed to align with key operational goals: regulating 

particle size, maximizing throughput, and controlling reject rates. This approach ensured that 

algorithms could adapt effectively to the dynamic conditions of the grinding process. 

Evaluation of Learning Performance 

The efficacy of each algorithm was assessed by its ability to meet control objectives within 

operational constraints. Performance evaluations focused on stability, efficiency, and 

adaptability to changes, using these metrics to identify strengths and weaknesses. Insights 

from this comprehensive evaluation aided in selecting the most suitable algorithms for practical 

deployment in the grinding circuit. 

Further Evaluation in a Simulated Industrial Environment 

This phase involved developing a sophisticated simulation environment based on virtual 

replicas of industrial-scale plants to replicate real-time operational conditions. The core 

objective was to integrate the refined reinforcement learning models into this environment, 

enabling their interaction and adaptation to various operational scenarios. The efficacy of the 

control strategies was rigorously tested by monitoring key performance indicators such as 

energy consumption, product quality, and operational stability. This evaluation phase was 

crucial for verifying the robustness and adaptability of the control strategies under diverse and 

changing conditions, preparing the models for real-world deployment. 

RESULTS AND DISCUSSION 

Digital Twin Model Predictions 

The development and evaluation of digital twin models formed the cornerstone of this research, 

as detailed in our methodology. The process involved a systematic and iterative approach to 

model generation and selection. Two critical models were developed: one predicting the 

product size of the grind and the other estimating the reject rate. The selection of these models 

for the reinforcement learning phase was based on their performance in test datasets, 

particularly their ability to generalize predictions accurately. 

To evaluate the efficacy of these models, a comparative analysis was performed. Predictions 

from the digital twin models were compared against actual measurements from a 1,000-minute 

operational period that included several recipe changes. This period was chosen deliberately 
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to challenge the models under varying operational conditions, thus providing a comprehensive 

assessment of their predictive capabilities. 

 

Figure 2: Comparison between the actual values and the prediction values of the digital 

twin for product size 

 

Figure 3: Comparison between the actual values and the prediction values of the digital 

twin for reject amount 

Figure 2 and Figure 3 illustrate a side-by-side comparison of the predicted values against the 

actual data for product size and reject rate. Despite minor discrepancies noted in the product 

size predictions over extended periods, the models demonstrated high accuracy for short-term 

predictions. This finding is particularly significant as it highlights the models' utility for real-time 

control applications, aligning with the goals set forth in the introduction and methodology 

chapters. 

Prediction Metrics and Model Evaluation 

The model evaluation utilized both individual and composite metrics  (0.5 × Mean Squared 

Error + 0.5 × Standard Deviation). After 20 training iterations, for the product size model, a 

Mean Squared Error (MSE) of 5.31 was noted, with a Standard Deviation (STD) of 1.94 

representing the variability in prediction accuracy compared to actual sensor readings. This 

resulted in a composite score of 3.63. In contrast, the reject amount model displayed an MSE 

of 71.81 and an STD of 8.47 against sensor data measurements, culminating in a higher 

composite score of 40.14. The greater standard deviation in the reject amount model likely 

reflects the generally higher inaccuracy of the sensors used to measure reject amounts. This 

factor should be considered when evaluating the prediction errors for this model. The training 

duration for each model, completed in just 36 minutes on the industrial edge device, 

underscores the practicality of these models for industrial applications.  
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The comprehensive evaluation of the digital twin models demonstrated their accuracy in 

predicting actual operational values within the plant. This accuracy is crucial for creating a 

reliable representation of the plant's behavior within a reinforcement learning architecture. The 

results affirm the potential of using digital twins as an integral part of an intelligent process 

control system in mineral processing, laying the groundwork for their effective incorporation in 

real-world industrial applications. 

Reinforcement Learning Results 

Policy Evaluation Results 

The training of reinforcement learning algorithms was an intensive process, conducted over 

400,000 epochs for on-policy algorithms and 200,000 epochs for off-policy methods. On-policy 

reinforcement learning algorithms, such as Proximal Policy Optimization (PPO), directly learn 

from and improve the policy that is used to make decisions, meaning they evaluate and 

improve the same policy that determines the action. In contrast, off-policy methods like Deep 

Deterministic Policy Gradient (DDPG) learn a policy different from the one used to generate 

the data. This allows off-policy methods to learn from past experiences stored in a replay 

buffer, potentially making them more data-efficient as they can reuse this information for 

multiple updates. On the edge device, chosen for its suitability for industrial application, the 

training of each model took approximately 1 to 1.25 hours. All models performed 

commendably, achieving mean rewards as high as 1,043, which is significant when compared 

to the maximum achievable reward of 1,400. Whereas this maximum reward is a theoretically 

calculated value, representing the ideal scenario where the particle size consistently meets the 

target size, the mill operates at the maximum allowable feed rate, and the amount of reject 

material remains within acceptable limits. This value serves as a benchmark for evaluating the 

performance of the reinforcement learning algorithms against the best possible outcome in 

controlled conditions. Figure 4 exemplifies these results, showcasing the SAC algorithm's 

training outcomes as a representative sample of all models. 
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Figure 4: Reward curve for Soft Actor-Critic over 200,000 epochs, illustrating an initial 

surge and logarithmic growth, culminating in lower final rewards 

The policy evaluation results are summarized in Table 1, highlighting the training time, mean 

reward, standard deviation, and overall score (0.8 × Mean Reward - 0.2 × Standard Deviation 

Reward) for each algorithm: 

Table 1: Policy evaluation results 

Algorithm Training Time Mean Reward ± Std Reward Score 

PPO 1hr 16min 816,739 ± 35,205 646,350 

A2C 1hr 15min 780,319 ± 57,866 612,682 

DDPG 1hr 1,019,611 ± 20,606 811,568 

SAC 1hr 16min 1,027,977 ± 28,815 816,618 

TD3 51min 966,746  ± 47,008 763,995 

During training, every 50 timesteps (equivalent to 50 minutes), the operational values, akin to 

different recipes, were altered to test the flexibility of the control algorithms. The adaptability 

and efficiency of these algorithms, particularly in responding to changes in operational targets, 

are exemplified in Figure 5, which contrasts the target product size with the actual product size 

achieved. 
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Figure 5: Dynamic Reward Curve and Regulation Quality for SAC Algorithm 

Simulation Environment Results 

In a customized simulation environment replicating industrial-scale plants, the Soft Actor-Critic 

(SAC) algorithm showcased the most promising results, particularly in terms of flexibility. One 

notable example from our trials involved a dramatic shift in target product size from 35 µm to 

25 µm. The SAC algorithm responded swiftly, stabilizing new setpoints within 10 minutes, and 

aligning closely with expectations for real-world industrial applications. Within another 10 

minutes, adjustments in feed rate and mill fan speed were optimized. Notably, the recirculating 

load increased from 55% to 120% during this change, consistent with theoretical expectations 

and practical observations for achieving a finer product size. Moreover, the feed rate to the mill 

was carefully modulated to keep the reject rate below the circuit's maximum capacity of 120 

tph. 

This efficient modulation of operational parameters by the SAC algorithm emphasizes its 

capability to swiftly adapt to new observations, leading to two significant benefits in the 

operation of grinding plants: improved product quality and enhanced energy efficiency. These 

benefits stem directly from the reinforcement agent's reward function, which, as outlined in the 

methodology chapter, is designed to constantly optimize these objectives. By efficiently 

adjusting to changes in operational conditions, the SAC algorithm ensures that product quality 

remains consistently high, regardless of variations in the grinding process. This adaptability is 

crucial for meeting stringent quality standards and responding to dynamic market demands. 

Additionally, the focus on maximizing energy efficiency reflects a key aspect of sustainable 

mineral processing. The algorithm's ability to operate close to the circuit's limits, while 

maintaining optimal performance, demonstrates a significant advancement in reducing energy 

consumption. This not only aligns with the overarching goal of sustainable operations but also 

offers substantial cost savings and environmental benefits. 

These results, visualized in Figure 6, confirm the efficacy of the reinforcement learning 

approach in enhancing grinding circuit operations. The SAC algorithm sets a benchmark for 
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future implementations and research in the field, offering a data-driven pathway to higher 

product quality and energy efficiency in mineral processing. 

 

Figure 6: Trends showcasing changes in recirculating load and other operational 

parameters during a shift in target product size. 

 

CONCLUSION AND FUTURE WORK 

The research journey detailed in this research has been a transformative exploration into the 

autonomous control of dry grinding circuits in mineral processing, grounded in data-driven 

machine learning techniques. The research has successfully investigated complex 

technological paradigms and formulated innovative strategies and methodologies that are 

applicable in industrial settings. 

Summary of Findings 

The core findings of this research demonstrate the significant potential of online reinforcement 

learning, a branch of machine learning, for intelligent control in industrial processes: 

 Identification of Key Variables: The research successfully identified critical 

operational parameters and control features, laying a robust foundation for subsequent 

modeling and control strategies. 

 Digital Twin Development: The creation of a databased digital twin has been pivotal. 

This high-fidelity simulation mirrors the intricate dynamics of grinding processes, 

offering a platform for predictive analysis and operational experimentation without real-

world interruptions. 
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 Training Environment for Reinforcement Learning: A specialized training 

environment was developed, tailored to the unique requirements of the grinding circuit. 

This environment's adaptability and scalability highlight its capability to handle diverse 

operational data effectively. 

 Training of Reinforcement Learning Models: The research meticulously trained and 

evaluated both on-policy and off-policy reinforcement learning algorithms, which 

demonstrated high efficacy and robustness, indicating their substantial potential for 

real-world applications. 

These contributions not only advance the field of mineral processing but also set a precedent 

for future research and development in intelligent industrial control systems. The exploration 

of advanced machine learning techniques, particularly in autonomous and adaptive control, 

opens up new avenues for innovation in mineral processing and related industrial applications. 

Future Work 

Looking ahead, the study outlines several promising avenues for further exploration and 

practical application: 

 Implementation in Industrial Scale Plant: The immediate next step involves 

deploying the developed algorithm in a full-scale industrial plant. This crucial phase will 

validate the algorithm's practical efficacy and reliability in a real-world setting, providing 

valuable insights for further refinement. 

 Transfer Learning: Investigating transfer learning to enhance data efficiency and 

model robustness. This approach facilitates rapid deployment of intelligent control 

systems across different plant setups, adapting previously learned knowledge to new 

environments with minimal need for retraining. 

 Grey-Box Models: Exploring the integration of grey-box models, which combine 

physical laws with data-driven insights, offers a more flexible and efficient approach to 

modeling of digital twins. Such models can provide a deeper understanding of the 

underlying processes while still leveraging the power of machine learning. 

 Hybrid Implementation Strategy: Developing a hybrid approach that merges cloud-

based learning with localized edge computing. This strategy aims to enhance inter-

plant collaboration and provide tailored solutions to each plant’s unique requirements, 

balancing centralized insights with local operational needs. 

In summary, this research not only marks a significant advancement in the field of intelligent 

manufacturing but also sets a solid foundation for the future of mineral processing. The 

continued exploration and application of these innovative strategies promise to bring about 

substantial improvements in efficiency, sustainability, and adaptability within the industry. 

Emphasizing environmental impact, this approach has the potential to significantly reduce 

energy consumption and costs, contributing to more sustainable practices in mineral 

processing. The journey into these new territories is expected to yield novel solutions and 

deeper insights into complex industrial systems, further driving progress, and operational 

efficiency in the mineral processing sector. 
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